Lambert W function
collapse all in page
Syntax
lambertw(x)
lambertw(k,x)
Description
example
lambertw(x)
returns the principal branch of the Lambert W function. This syntax is equivalent to lambertw(0,x)
.
example
lambertw(k,x)
is the k
th branch of the Lambert W function. This syntax returns real values only if k = 0
or k = -1
.
Examples
collapse all
Return Equation with Lambert W Function as Its Solution
The Lambert W function W(x)
isa set of solutions of the equation x = W(x)eW(x)
.
Solve this equation. The solution is the Lambert W function.
syms x Weqn = x == W*exp(W);solve(eqn,W)
ans =lambertw(0, x)
Verify that branches of the Lambert W function are valid solutions of the equation x = W*eW
:
k = -2:2;eqn = subs(eqn,W,lambertw(k,x));isAlways(eqn)
ans = 1×5 logical array 1 1 1 1 1
Lambert W Function for Numeric and Symbolic Arguments
Depending on its arguments, lambertw
canreturn floating-point or exact symbolic results.
Compute the Lambert W functions for these numbers. Because the numbers are not symbolic objects, you get floating-point results.
A = [0 -1/exp(1); pi i];lambertw(A)
ans = 0.0000 + 0.0000i -1.0000 + 0.0000i 1.0737 + 0.0000i 0.3747 + 0.5764i
lambertw(-1,A)
ans = -Inf + 0.0000i -1.0000 + 0.0000i -0.3910 - 4.6281i -1.0896 - 2.7664i
Compute the Lambert W functions for the numbers converted to symbolic objects. For most symbolic (exact) numbers, lambertw
returns unresolved symbolic calls.
A = [0 -1/exp(sym(1)); pi i];W0 = lambertw(A)
W0 =[ 0, -1][ lambertw(0, pi), lambertw(0, 1i)]
Wmin1 = lambertw(-1,A)
Wmin1 =[ -Inf, -1][ lambertw(-1, pi), lambertw(-1, 1i)]
Convert symbolic results to double by using double
.
double(W0)
ans = 0.0000 + 0.0000i -1.0000 + 0.0000i 1.0737 + 0.0000i 0.3747 + 0.5764i
Plot Two Main Branches of Lambert W Function
Open Live Script
Plot the two main branches, and , of the Lambert W function.
syms xfplot(lambertw(x))hold onfplot(lambertw(-1,x))hold offaxis([-0.5 4 -4 2])title('Lambert W function, two main branches')legend('k=0','k=1','Location','best')
Lambert W Function Plot on Complex Plane
Open Live Script
Plot the principal branch of the Lambert W function on the complex plane.
Plot the real value of the Lambert W function by using fmesh
. Simultaneously plot the contours by setting 'ShowContours'
to 'On'
.
syms x yf = lambertw(x + 1i*y);interval = [-100 100 -100 100];fmesh(real(f),interval,'ShowContours','On')
Plot the imaginary value of the Lambert W function. The plot has a branch cut along the negative real axis. Plot the contours separately.
fmesh(imag(f),interval)
fcontour(imag(f),interval,'Fill','on')
Plot the absolute value of the Lambert W function.
fmesh(abs(f),interval,'ShowContours','On')
Input Arguments
collapse all
x
— Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array | symbolic function | symbolic expression
Input, specified as a number, vector, matrix, or array, or a symbolic number, variable, array, function, or expression.
At least one input argument must be a scalar, or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other is a vector or matrix, lambertw
expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.
k
— Branch of Lambert W function
integer | vector or matrix of integers | symbolic integer | symbolic vector or matrix of integers
Branch of Lambert W function, specified as an integer, a vector or matrix of integers, a symbolic integer, or a symbolic vector or matrix of integers.
At least one input argument must be a scalar, or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other is a vector or matrix, lambertw
expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.
More About
collapse all
Lambert W Function
The Lambert W function W(x) representsthe solutions y of the equation for any complex number x
.
For complex x, the equation hasan infinite number of solutions y = lambertW(k,x) where k rangesover all integers.
For all real x ≥ 0, the equation has exactly one real solution y = lambertW(x) = lambertW(0,x).
For real x where , the equation has exactly two real solutions. The larger solution is represented by y = lambertW(x) and the smaller solution by y = lambertW(–1,x).
For , the equation has exactly one real solution y = –1 = lambertW(0, –exp(–1)) = lambertW(–1, -exp(–1)).
References
[1] Corless, R.M., G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth. "On the Lambert W Function." Advances in Computational Mathematics, Vol. 5, pp. 329–359, 1996.
Version History
Introduced before R2006a
See Also
Functions
- wrightOmega
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- Deutsch
- English
- Français
- United Kingdom (English)
Contact your local office